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Abstract

The 2025 George B. Moody PhysioNet Challenge
focuses on detecting Chagas disease from standard 12-
lead electrocardiogram (ECG) recordings, where the
main difficulties include heterogeneous data sources,
weak versus strong labeling, and serious class imbalance.
Our team, Med YNNU, proposed a deep learning
framework based on a Res2Net-Transformer backbone
that integrates curriculum learning and hard sample
mining to improve both convergence and sensitivity to
rare cases. The architecture consists of a main
classification head for Chagas prediction, auxiliary
branches predicting demographic and physiological
variables trained with proxy constants acting as weak
regularizers, and an adaptive threshold head that refines
the decision boundary. Training follows a curriculum that
progresses from easy to hard samples, while hard sample
mining dynamically emphasizes high-loss cases to
strengthen discriminability under borderline conditions.
Finally, our team, Med YNNU, achieved a mean
Challenge score of 0.221 on the hidden test set, ranking
15st out of 40 teams. The detailed test performance
includes a Challenge score of 0.304 on the REDS-II test
set, 0.276 on the SaMi-Trop 3 test set, and 0.082 on the
ELSA-Brasil test set.

1. Introduction

Chagas disease, caused by Trypanosoma cruzi and
transmitted mainly by triatomine insects, is a neglected
tropical disease that remains a major health concern in
Central and South America, with an estimated 6.5 million
cases and nearly 10,000 deaths annually [1,2]. After an
initial acute phase, many patients progress to a chronic
stage that may lead to severe cardiomyopathy, including
conduction delays, arrhythmias, and heart failure. Early
treatment with antiparasitic drugs can prevent progression,
but reliable diagnosis relies on serological testing, which
is often unavailable or infeasible for large-scale screening
in endemic regions. Electrocardiograms (ECGs) provide a
low-cost, widely accessible alternative, since Chagas-

Computing in Cardiology 2025; Vol 52

related abnormalities are frequently reflected in waveform
morphology and temporal conduction patterns [3].

The 2025 George B. Moody PhysioNet Challenge
addresses this gap by inviting open-source algorithmic
approaches to detect Chagas disease from standard 12-
lead ECGs [4,5]. The problem is technically challenging
due to the coexistence of large weakly labeled cohorts
and smaller strongly labeled datasets, as well as the
severe class imbalance between positive and negative
cases. These conditions complicate optimization and
hinder model generalization across populations.

To overcome these challenges, we investigate a
Res2Net-Transformer  framework that incorporates
curriculum learning and hard sample mining. Curriculum
learning offers stable convergence by exposing the model
to progressively harder training samples, while hard
sample mining improves sensitivity to rare and borderline
cases that are clinically significant. In addition, we
introduce a multi-head architecture with auxiliary
branches designed to predict demographic and
physiological features and an adaptive threshold head to
refine decision boundaries.

2. Methods

2.1. Datasets and Data Preprocessing

The Challenge data consist of standard 12-lead
electrocardiogram recordings collected from multiple
cohorts across Central and South America, complemented
with basic demographic information and binary labels for
Chagas disease. The publicly available training data are
derived from three main sources: (i) CODE-15% dataset
[6]: more than 300,000 ECGs from Brazil (weak self-
reported Chagas labels). (ii) SaMi-Trop dataset [7]: 1,631
ECGs from Brazil with strong serological labels (all
positive). (iii) PTB-XL dataset [8]: 21,799 European
ECGs (all assumed negative). All recordings are 12-lead,
7.3-10.2 s long, sampled at 400-500 Hz.

The preprocessing pipeline consists of several steps.
First, each raw 12-lead ECG recording is truncated or
zero-padded to a fixed length of 4096 samples to ensure
uniform input size. Second, z-score normalization is
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applied on a per-recording basis to reduce baseline drift
and amplitude variability. Finally, the processed signals
are stored in a tensor format of shape (12,4096), which is
used as the model input.

2.2. Model Architecture

The proposed network integrates convolutional,
residual, and self-attention modules with approximately
3.2 million trainable parameters, as illustrated in Figure 1.
A 1D convolutional front-end (kernel size 15, stride 1, 12
input leads to 64 channels) extracts local temporal
features. A subsequent Res2Net stage with squeeze-and-
excitation (SE) modules increases channel capacity to 256,
and enabling multi-scale representation learning with
residual splits (scale = 2, base width = 16) [9]. The
temporal resolution is then reduced by pooling to a
sequence length of 128, which serves as the input to a 2-
layer Transformer encoder (embedding dimension 256, 4
attention heads, feed-forward dimension 512, dropout 0.1)
that models long-range dependencies across the ECG
sequence.

The shared representation is fed into multiple heads: (i)
A main classification head (Linear 256 — 64 — 1) for
Chagas prediction. (ii) Four auxiliary heads (age, sex,
heart rate, and QRS duration; each implemented as Linear
layers from 256-d to 1) that were trained with proxy
constant labels and act as weak regularizers. (iii) A
threshold head (Linear 256 — 1 with Sigmoid) that
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produces an adaptive decision boundary. The auxiliary
heads are enclosed in dashed boxes in Figure 1, indicating
that they are optional components and can be removed
without affecting the core framework.

In summary, this design directly aligns model capacity
with  clinically meaningful ECG characteristics,
supporting more accurate disease detection.

2.3. Curriculum Learning and Hard

Sample Mining

To stabilize training in the presence of imbalanced and
noisy labels, we adopt a curriculum learning strategy
combined with hard sample mining. Following the
principles of curriculum learning [10] and hard sample
mining [11], we define the training schedule as follows
(Eq. (1) = (5)). For each training sample ~ with label
we define its difficulty as the prediction loss (Eq. (1)):

()=0CC)) @
Where  is the model with parameters . During epoch ,
samples are selected if their difficulty is below a
threshold  (Eq. (2)), customized formula for curriculum

scheduling:
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Figure 1. The architecture diagram of our proposed approach. (a) Model architecture. (b) Res2Net architecture.
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This ensures that training starts from easy samples and
gradually incorporates more challenging ones. Hard
sample mining is further applied by dynamically
collecting samples with loss exceeding a margin  (Eq.
®):

={ () )=} =05 (4
The final mini-batch is formed by combining easy and
hard sets (Eq. (5)):

= )

This combined strategy ensures stable early-stage
optimization while emphasizing borderline and
misclassified samples during later stages, directly
enhancing performance on rare but clinically significant
Chagas cases.

2.4. Loss Function

The overall objective combined main classification
loss, auxiliary task losses, ranking loss, and threshold
regularization (Eq. (6)), the total loss was formalized as:

- amaianain +aauxLaux +arankLrank +athrLthr (6)

Where , , and are weighting coefficients

for the main, auxiliary, ranking, and threshold losses,

respectively. In this work, we set
=1, =01, =0.1,and =0.01.

Main classification loss
We used binary focal loss [12] to address severe class
imbalance (Eq. (7)):
== @@= () (7)
Where [0/1] is a balancing factor between positive
and negative classe( = 0.25 in our experiments)s, =0
is the focusing parameter that down-weights easy samples

and emphasizes hard ones( Y = 2 in this work), and
denotes the predicted probability of the corresponding
class label .

Auxiliary task loss
The auxiliary heads were trained with proxy constant
labels. For binary auxiliary tasks, we optimize the
auxiliary binary classification heads using binary cross-
entropy with logits (Eq. (8)), following the standard
formulation [13]:
Lo==2
=1

Where N is the number of samples in a mini-batch,
{0,1} is the ground-truth label of the i-th sample, is the
raw logit output of the auxiliary head before activation,

() denotes the sigmoid function that maps logits to
probabilities. For regression-type tasks, mean squared
error [14] was applied (Eq. (9)):
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Where is the corresponding regression output predicted
by the auxiliary head. The auxiliary loss combined all
branches (Eq. (10)). Our customization, supported by
multitask learning theory [15]:

= (10)

Where balances contributions from each auxiliary task.
Ranking loss

To align optimization with the Challenge metric, we
adopted a pairwise margin-based ranking loss [16] (Eq.
(11)): .

=— 0, - - (11)
NI ( ( ))

Where and are sets of positive and negative samples,

and  are their predicted scores, and  is a margin
hyperparameter.

Threshold regularization

Inspired by prior work on adaptive decision boundaries
[17], we regularized the adaptive threshold head toward a
prior mean of 0.5 using an L2 penalty (Eq. (12)):

1
== (12)

Where 7; is the adaptive threshold predicted for the i-th
sample and constrained to [0,1] by a sigmoid activation,

= 0.5 is the prior mean threshold representing a neutral
decision boundary.

2.5. Model Training

The model was trained using stratified 5-fold cross-
validation to preserve class balance across folds. We
optimized the model’s parameters with AdamW (initial
learning rate 2x10—4, weight decay 1x10-2), mini-batch
size was set to 96, and a cosine annealing learning rate
schedule. Early stopping was applied with a patience of 5
epochs, using a joint criterion that monitored both
validation loss and the Top-5% TPR metric to balance
stability and clinical relevance. Curriculum learning was
applied by starting from 30% “easy” samples and
progressively incorporating harder ones, while hard
sample mining emphasized samples with binary cross-
entropy loss greater than 0.5. Dropout (0.2) and auxiliary
task losses provided additional regularization, and the
adaptive threshold head was trained jointly with a prior
mean of 0.5 to stabilize decision boundaries. For
inference, we ensembled the 5 fold-specific models by
averaging their output probabilities, which provided a
robust final prediction and reduced variance.

3. Results

We evaluated our proposed algorithms using five-fold
cross-validation on the public training set with the official
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Challenge evaluation metric. The final submitted model
achieved a mean Challenge score of 0.221 on the hidden
test set, ranking 15th out of 40 teams on the official
leaderboard. The detailed Challenge scores on the public
training, hidden validation, and test sets are summarized
in Table 1

Training | Validation | Test | Ranking
0.20340.05 0.299 0.221 | 15/40

Table 1. Summary of official Challenge results for team
Med_YNNU.

4. Discussion and Conclusions

The proposed Res2Net—Transformer model achieved a
Challenge score of 0.299 on the REDS-II validation set
and a mean score of 0.221 on the hidden test set. Across
individual test cohorts, the model obtained 0.304 on
REDS-II, 0.276 on SaMi-Trop 3, and 0.082 on ELSA-
Brasil [4,5]. These results indicate that the model
generalizes well to datasets with characteristics similar to
the training domain, such as REDS-II and SaMi-Trop 3,
which contain serologically confirmed labels and
comparable acquisition settings. In contrast, the lower
score on ELSA-Brasil suggests limited transferability to
more heterogeneous populations with lower Chagas
prevalence and differing recording systems. The observed
variation highlights the influence of cohort diversity and
data distribution shift on model generalization. Overall,
these findings demonstrate the potential of deep learning—
based approaches for ECG-based Chagas screening, while
emphasizing the need for improved cross-domain
adaptation and data harmonization to achieve consistent
performance across diverse clinical populations.
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